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Abstract. 2D keypoint detection plays an important role in the fields of
group behavior analysis, motion capture, human-computer interaction,
and security monitoring. However, in high-density crowd environments
or edge devices with limited computational resources, it is still a major
challenge to improve inference efficiency while ensuring detection accu-
racy. To this end, this paper proposes a keypoint detection framework
called ‘DTMPose’, whose core innovation is to replace the computation-
ally intensive attention module with a Mamba-based state-space model
(SS2D mechanism) and to introduce a sense-field-enhanced convolution
(e.g., ‘DPConv’) in the key parts, to improve the detection of local occlu-
sion and edge details. Compared to models which only rely on the self-
attention mechanism, DTMPose reduces the computational overheads,
whilst still capturing global dependencies, and effectively mitigates lo-
cal keypoint ambiguities through enhanced convolution. Experimental
results on the COCO dataset show that DTMPose maintains a low pa-
rameter count with an accuracy of about 76% AP, demonstrating its
deployment potential in high-density crowd scenarios and mobile edge
devices, as well as providing a new feasible solution for applications such
as people flow monitoring and group behavior analysis.

Keywords: 2D keypoint detection · State Space Model · Selective Scan
(SS2D) · Pose Estimation · Lightweight Architecture.

1 Introduction

2D keypoint detection plays a crucial role in diverse application scenarios, in-
cluding behavioral understanding, human-computer interaction, and motion cap-
ture. With the advancement of deep learning, two mainstream paradigms have
emerged. Convolutional Neural Networks (CNNs), such as ResNet [1] and HR-
Net [2], offer efficient local perception and perform well at small to medium res-
olutions. In contrast, Transformer architectures [3], with global self-attention,
demonstrate superior long-range dependency modeling and achieve high accu-
racy, as shown in ViTPose [4]. Nevertheless, practical limitations remain: CNNs
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face high computational and memory costs in large-resolution or dense scenar-
ios, while Transformers suffer from quadratic complexity with respect to feature
map size, hindering deployment in resource-limited environments.

In recent years, state-space modeling (SSM)[5, 6] has introduced new per-
spectives to pose detection by enabling efficient modeling of long-range depen-
dencies with linear or quasi-linear time complexity, especially in long sequences
or high-resolution scenarios. Mamba[6], a refined SSM architecture, enhances
this by integrating row and column features through a selective scan mecha-
nism, thereby reducing parameters and computation while preserving modeling
capacity. However, its reliance on global modeling may overlook local occlusions
and fine-scale features, limiting performance in detail-sensitive tasks.

To better balance detection accuracy and computational efficiency, this paper
proposes a novel keypoint detection framework, DTMPose. It integrates state-
space modeling with locally enhanced convolution. Unlike conventional CNNs
or Transformers, DTMPose employs a Mamba-based SS2D backbone to replace
large-scale self-attention, reducing computational cost while preserving global
dependency modeling. Additionally, depthwise partial convolution (e.g., DP-
Conv) is inserted at key stages to improve representation of small-scale targets
and locally occluded regions. A multi-scale feature fusion neck further facilitates
the preservation of semantic and detailed features throughout tensor transfor-
mations during model training, thereby improving adaptability to diverse pose
scenarios.

Fig. 1. Performance and parameter comparison of different attitude estimation models
on the COCO val2017 dataset.
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To visually highlight the distinctions between this study and existing meth-
ods, Fig.1 compares the overall performance of representative pose detection
models[2, 4, 7–14]. The x-axis indicates model parameters (Params), the y-axis
shows detection accuracy (AP: Average Precision), and circle area denotes model
size, with a color gradient from orange (low) to cyan (high) reflecting GFLOPs,
as detailed in the right-hand color bar. As illustrated, CNN-based models (e.g.,
ResNet, HRNet) are limited in accuracy, while Transformer-based models (e.g.,
ViTPose) offer higher accuracy but with greater computational and memory de-
mands. In contrast, DTMPose achieves comparable or superior accuracy with
significantly fewer parameters. This significantly reduces the overall number of
parameters, providing a more scalable and practical solution for human posture
recognition in resource-constrained environments.

The core contributions of this paper are as follows:

1. A novel backbone architecture that integrates state-space modeling with lo-
cally enhanced convolution is proposed, combining global dependency mod-
eling and fine-grained feature extraction to improve detection accuracy.

2. Multi-scale feature fusion is employed to enhance local keypoint detection
and improve robustness in occluded scenarios.

3. DTMPose maintains or improves detection accuracy while significantly
reducing parameter count and computational overhead, offering a more
lightweight and efficient solution for pose estimation tasks.

2 Related work

2D keypoint detection focuses on locating human joint positions in images or
videos and plays a vital role in applications such as behavioral analysis, human-
computer interaction, and security monitoring. With advances in deep learning,
extensive research has aimed to improve inference efficiency while maintaining
high accuracy. Existing methods mainly fall into two categories: convolutional
neural network (CNN)-based and Transformer-based frameworks.

2.1 CNN-based Keypoint Detection Methods

CNN-based architectures have long dominated keypoint detection due to their
strong local perception and computational efficiency. Early methods typically
pair a backbone (e.g., ResNet) with upsampling or multi-resolution modules
to enhance localization. For instance, SimpleBaseline [13] restores spatial reso-
lution via deconvolution layers, while HRNet employs multi-resolution parallel
branches to fuse features and maintain high-resolution representations, resulting
in improved localization accuracy through stronger local feature representation.

2.2 Transformer-based Keypoint Detection Methods

The Transformer architecture, with its global self-attention mechanism, has
demonstrated strong capability in modeling cross-region information and has
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been increasingly adopted in keypoint detection tasks. For example, Trans-
Pose [14] applies Transformer layers to globally model CNN-extracted features,
TokenPose encodes keypoint positions as tokens, and ViTPose leverages the
Vision Transformer backbone to fully exploit global context modeling. While
Transformer-based methods achieve competitive accuracy, particularly in high-
density or high-resolution scenarios and when trained on large-scale datasets,
their computational complexity scales quadratically with input size, often lead-
ing to redundant parameters and inefficiencies in model size and inference cost

2.3 State Space Modeling (SSM) Methods

Recently, State Space Models (SSMs) have shown favorable time complexity
and generalization for sequence modeling and signal processing, offering new
perspectives for dense prediction tasks like keypoint detection. These models
capture long-range dependencies with lower computational cost and fewer pa-
rameters. For instance, Mamba uses a selective scan to integrate row and column
features, avoiding the high overhead of self-attention in high-resolution images
while maintaining global context modeling. However, due to limited local detail
perception, complementary techniques—such as convolution, attention, or mul-
tiscale fusion—are often required to achieve balanced and accurate predictions.

3 Method

Starting from the idea of modules in the overall network structure, this chapter
introduces the Mamba row-scanning mechanism (an alternative to self-attention
for global dependency capture) and then describes the overall multilevel design
of the DTMPose model, before detailing the introduction of feel-field-enhanced
convolution (DPConv), as well as the Stem and Neck modules of the network,
in order to balance the local details with the global modeling requirements.

3.1 Mamba: 2D-Selective Scan mechanism

The Transformer architecture models global dependencies via self-attention but
suffers from O(n2) complexity, limiting its scalability to high-resolution vision
tasks. In contrast, the Mamba series introduces a row-column scanning mech-
anism based on State Space Models (SSMs), enabling global context modeling
with approximately linear complexity and offering a more efficient infrastructure
for visual representation learning.

Mamba-1: Selective State Space Model Mamba-1 [5] extends the clas-
sical linear time-invariant state-space model (LTI-SSM) by introducing input-
dependent dynamic parameterization for enhanced adaptability. The continuous-
time system is formulated as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)
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which is discretized (via Zero-Order Hold) into:

ht = Āht−1 + B̄txt, yt = Ctht, (2)

where Ā and B̄t are learned or derived from A and B. Mamba introduces dynamic
modulation:

B̄t = sB(xt), Ct = sC(xt), ∆t = τA(Param + sA(xt)), (3)

with s{·} as learned functions and τA a softplus activation. This flexible design
enables Mamba to handle diverse temporal dynamics. However, its sequential
nature limits parallelism during training.

Mamba-2: Parallel Acceleration via State Space Duality To improve
computational throughput, Mamba-2 [15] reformulates the state-space recur-
rence into a fully parallelizable matrix form using State Space Duality (SSD):

y = Mx, Mji = C⊤
j Aj · · ·Ai+1Bi, (4)

and under tied transitions, the matrix M admits factorization:

M = L ◦ (CB⊤), (5)

where L is lower-triangular and ◦ denotes element-wise multiplication. This al-
lows Mamba-2 to match attention-level expressiveness with linear time complex-
ity, achieving 2–8× speedup over Mamba-1 in practice.

Two-dimensional selective scanning mechanism (2D-Selective Scan,
SS2D) To better adapt the two-dimensional structure of images in image tasks,
VMamba [16, 17] proposed a 2D-Selective Scan (SS2D) mechanism based on
one-dimensional state-space modeling, to extend the state-space model to image
space. As shown in Figure 2, SS2D achieves spatial sensory field enhancement by
propagating the state along the row direction and column direction, respectively.

Fig. 2. Schematic diagram comparing the traditional self-attention mechanism with
the 2D-Selective Scan (SS2D) mechanism.

The mechanisms are illustrated as follows:
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(a) Self-Attention: Each pixel (in red) attends to all others via a global atten-
tion mechanism, enabling direct modeling of long-range dependencies but
incurring high computational cost, particularly in high-resolution images.

(b) 2D-Selective Scan (SS2D): SS2D propagates state information horizontally
and vertically (blue and orange arrows), enabling each pixel to capture long-
range context along both axes. Unlike self-attention, SS2D adopts a state-
space model with linear complexity.

In the final fusion (indicated by “⊕”), horizontal and vertical states are com-
bined to approximate a global perceptual field with significantly lower compu-
tational cost. Compared to self-attention, SS2D achieves higher efficiency and
stronger structural generalization, making it well-suited for 2D vision tasks such
as recognition, segmentation, and pose estimation.

3.2 Overall model architecture: DTMPose

DTMPose
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Fig. 3. (a) Overall processing flowchart of DTMPose; (b) Overall architecture of DTM-
Pose; (c) Structure of DPS Block; (d) Structure of Stem Block; (e) Structure of DPU
Block for downsampling and feature fusion.
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To balance detection accuracy and computational efficiency in pose estima-
tion tasks, we propose DTMPose, a dual-domain modeling framework that in-
tegrates state-space modeling with locally enhanced convolution. As shown in
Figure 3, DTMPose consists of four main components:

– Stem Module: Performs initial downsampling and enhances low-level struc-
tural features.

– Multi-stage Backbone: Combines SS2D for global modeling and DPConv
for local feature enhancement.

– Decoder Path: Gradually restores spatial resolution while refining pose-
related representations.

– Heatmap Head: Generates 2D keypoint heatmaps for final pose estimation.

The DTMPose framework first applies the Stem module to extract low-
dimensional features, followed by multi-stage encoding via DPS Blocks. Spatial
resolution is then recovered using DPU Blocks, ultimately yielding the predicted
human pose. This design effectively balances global modeling and local percep-
tion with high computational efficiency.

3.3 Backbone Network Design: DPS Block

The backbone of DTMPose adopts multi-stage stacked DPS Blocks, which in-
tegrate row-and-column state-space modeling (SS2D) with spatial-domain local
enhancement (DPConv) to jointly capture global context and fine-grained struc-
tures. Each DPS Block comprises three parallel paths:

1. SS2D Path (DPSD Block): leverages Mamba’s 2D Selective Scan to
model long-range dependencies along rows and columns with linear com-
plexity;

2. Feedforward Path (FFN): enhances channel-wise representation via non-
linear mapping;

3. Locally Enhanced Path (DPConv): employs receptive field enhanced
convolution module to improve recognition in occluded, small-scale, and
boundary regions.

A cross-path residual fusion mechanism integrates the outputs while preserv-
ing their respective advantages. The multi-stage structure enables hierarchical
perception of semantic and spatial cues across scales, enhancing robustness in
multi-gesture and complex-background scenarios.

3.4 Receptive Field Enhanced Convolution Module: DPConv

In human pose estimation, local regions such as limb overlaps and occlusions
are common sources of error. To address this, DTMPose introduces DPConv—a
lightweight receptive field enhancement module inspired by separable convolu-
tion [18]—to augment spatial perception and compensate for the limited spatial
discrimination of state-space modeling.

DPConv (Figure 4) operates in three phases:
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Fig. 4. DPConv Module Architecture.

1. Multiscale modeling: depthwise separable convolutions (3× 3 DWConv)
capture spatial patterns with reduced parameters;

2. Directional enhancement: asymmetric padding and direction convolu-
tions extract boundary features to simulate bionic perception;

3. Channel fusion: directional features are concatenated and compressed to
restore the original channel size while preserving spatial structure.

DPConv can be flexibly applied, particularly in the Stem and Decoder stages,
to enhance recognition of occlusions and structural edges—critical for DTM-
Pose’s high accuracy and robustness.

3.5 Stem and DPU Block Implementation Details

Stem Module As shown in Figure 3(d), the Stem stage preprocesses the input
and reduces spatial resolution. DPConv is introduced to enhance shallow feature
responses to local structures. Combined with GELU activation, DWConv, and
BN, it constructs a lightweight yet expressive low-dimensional feature space for
the backbone.

DPU Block In the decoding stage, the DPU Block enhances spatial detail
recovery by combining moderate upsampling with DPConv-based downsampling.
This structure strengthens edge information perception while maintaining spatial
consistency, improving localization accuracy in complex scenes.

Finally, the Heatmap Head projects the decoded features to keypoint heatmaps
for high-precision 2D pose estimation.

4 Experimentation

4.1 Experimental setup

The purpose of this chapter is to provide a systematic evaluation of the perfor-
mance of the DTMPose framework across multiple datasets and scenarios. We
developed the empirical analysis around the following core questions:

1. Can DTMPose significantly reduce model complexity and inference cost
while maintaining high accuracy under different architectures and module
configurations?
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2. Does DTMPose strike a better trade-off between cross-dataset performance,
computational efficiency and accuracy than existing mainstream keypoint
detection methods?

3. Can the integration of the DPConv local enhancement module within the
Mamba state-space framework effectively expand the receptive field and im-
prove the model’s capacity for local feature modeling?

To comprehensively evaluate the performance of the model in human key-
point detection tasks, we conducted experiments on two widely used standard
datasets: the COCO 2017 Keypoint Dataset [19] and the MPII Human Pose
Dataset [20]. The experiments cover a variety of dimensions, such as modular
ablation, method comparison, and heatmap visualization, to ensure the compre-
hensiveness and rigor of the evaluation.

The experiments were conducted using a single NVIDIA RTX 4090 GPU un-
der the PyTorch framework, with the input resolution set to 256×192.The imple-
mentation was based on the MMPose [21] toolbox. The optimizer was AdamW,
with an initial learning rate of 3 × 10−4 and a 500-step warm-up and poly de-
cay strategy. The training period was set to 210 epochs and the batch size was
dynamically adjusted according to the memory.

4.2 Comparative analysis of overall structural performance

To validate the effectiveness of the proposed framework, we conducted a com-
prehensive comparison between DTMPose and representative pose estimation
models (e.g., HRNet, ViTPose) on the COCO 2017 and MPII datasets.

Table 1. Comparison of representative pose estimation models on the COCO val2017
dataset in terms of accuracy, model size, and computational cost.

Model Input Size Backbone PT Params GFLOPs AP AP50 AP75 APM APL AR
SimpleBaseline [13] 384×288 ResNet-152 Y 60.0 15.7 73.7 91.9 81.1 70.3 80.0 79.0
TokenPose-L/D24 [10] 256×192 HRNet-W48 Y 27.5 11.0 75.8 90.3 82.5 72.3 82.7 80.9
TransPose-H-A6 [14] 256×192 HRNet-W48 Y 17.5 21.8 75.0 92.2 82.2 71.3 81.1 80.8
HRNet-W48 [2] 256×192 HRNet-W48 Y 63.6 14.6 75.1 90.6 82.2 71.5 81.8 80.4
HRNet-W48 [2] 384×288 HRNet-W48 Y 63.6 32.9 76.3 90.8 82.9 72.3 83.4 81.2
I2R-Net [7] 256×192 HRFormer-B Y 43.7 12.8 76.4 90.8 83.2 72.3 83.7 81.4
Lite-HRNet [23] 384×288 Lite-HRNet-30 N 1.8 0.7 70.4 88.7 77.7 67.5 76.3 76.2
ViTPose-B [4] 256×192 ViT-B Y 80.0 17.1 75.8 90.7 83.2 68.7 78.4 81.1
ViTPose-L [4] 256×192 ViT-B Y 307.0 59.8 78.3 91.4 85.2 71.0 81.1 83.5
SwinPose [24] 384×384 Swin-L Y 196.4 202.6 76.3 93.5 83.4 72.5 81.7 84.7
PRTR [8] 512×384 HRNet-W32 Y 57.2 37.8 73.3 89.2 79.9 69.0 80.9 80.2
RTMO [11] 256×192 CSPDarknet Y 44.8 8.0 71.6 91.1 79.0 66.8 79.1 75.6
ED-Pose* [22] 256×192 ResNet-50 N 42.5 33.5 71.6 89.7 78.3 79.3 94.3 79.3
RTMPose-L* [25] 256×192 CSPNeXt-L N 27.7 4.2 75.8 90.6 82.6 80.6 94.2 79.5
YOLOPose [12] 256×192 CSPDarknet Y 61.3 11.7 70.2 91.1 77.8 65.3 78.2 74.3
SimCC [9] 256×192 HRNet-W48 Y 66.3 14.6 75.4 92.4 82.7 71.9 81.3 80.5
DTMPose-B*(Ours) 256×192 Mamba N 15.1 10.0 75.8 90.3 82.6 72.4 82.3 80.8
DTMPose-L*(Ours) 256×192 Mamba N 21.6 12.2 76.5 90.5 83.3 72.8 83.2 81.4

Models marked with “*” are trained and evaluated using the official MM-
Pose [21] framework.
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As shown in Table 1, on the COCO dataset, DTMPose-B and DTMPose-
L achieve 75.8 and 76.5 AP, respectively, matching or surpassing ViTPose-B
(75.8 AP) while using significantly fewer resources—15.1M/21.6M parameters
and 10.0/12.2 GFLOPs, compared to ViTPose-B’s 80M parameters and 17.1
GFLOPs.

These results demonstrate that DTMPose delivers comparable accuracy with
much higher computational efficiency, highlighting its advantage in model com-
pactness and practical applicability.

On the MPII dataset (Table 2), DTMPose-L achieves a PCK of 89.0, closely
matching ViTPose-B (90.9) across keypoints such as the hip, knee, and ankle,
and clearly outperforming LiteHRNet and the Mamba baseline.

Notably, DTMPose-B attains 88.3 PCK with only 15.1M parameters, demon-
strating a strong trade-off between accuracy and efficiency.

Table 2. Keypoint-wise PCK comparison on the MPII validation set

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
LiteHRNet-18* [23] 96.1 93.7 85.5 79.2 87.0 80.0 75.1 85.9
LiteHRNet-30* [23] 96.3 94.7 87.0 80.6 87.1 82.0 77.0 87.0
HRNet-W32 [2] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
PRTR [8] 97.3 96.0 90.6 84.5 89.7 85.5 79.0 89.5
TokenPose-L [10] 97.1 95.9 91.0 88.5 89.8 86.1 82.7 90.2
ViTPose-S [4] 96.4 94.7 88.1 83.2 88.4 84.3 80.0 88.4
ViTPose-B [4] 97.0 96.2 90.7 86.7 90.4 88.2 84.2 90.9
DTMPose-B*(Ours) 96.5 95.0 88.1 81.6 88.6 84.4 80.2 88.3
DTMPose-L*(Ours) 96.8 95.4 88.7 83.1 89.1 85.4 81.4 89.0

In summary, DTMPose performs well on both COCO and MPII benchmark
datasets, especially in terms of the number of parameters and computational
complexity, which is significantly reduced, compared to ViTPose-B, verifying
the potential of our proposed framework for practical deployment.

4.3 Ablation Study of Local-Perception Modules

To quantify the effect of the proposed Depthwise Partial Convolution (DPConv)
and Decoder Path Unit (DPU), we ablated them on the COCO and MPII val-
idation sets. Six variants are compared: ViTPose-S/B baselines, the lightweight
SS2D/Mamba backbone, and the same backbone equipped with DPConv, with
DPU, or with both modules; see Tables 3 and 4.

On COCO, the plain Mamba backbone already surpasses ViTPose-S with
only 9.4 M parameters and 3.5 GFLOPs. Adding DPConv lifts the score to
75.3 AP/80.3 AR at minimal cost, while the full model (DPConv + DPU) at-
tains 75.8 AP and 80.8 AR—matching ViTPose-B yet using roughly 20 % of its
computational budget.
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Table 3. Ablation study of DPConv and DPU on the COCO validation set

Model DPConv DPU AP AR Params (M) GFLOPs
ViTPose-S 73.8 79.2 22.0 5.3
ViTPose-B 75.8 81.1 80.0 17.1
Mamba 74.1 79.2 9.4 3.5
Mamba

√
75.3 80.3 13.2 5.4

Mamba
√

74.3 79.4 11.4 8.1
Mamba

√ √
75.8 80.8 15.1 10.0

Table 4. Ablation study of DPConv and DPU on the MPII validation set

Model DPConv DPU Head Shoulder Elbow Wrist Hip Knee Ankle PCK
ViTPose-S 96.4 94.7 88.1 83.2 88.4 84.3 80.0 88.4
ViTPose-B 97.0 96.2 90.7 86.7 90.4 88.2 84.2 90.9
Mamba 96.8 94.9 86.4 80.0 87.2 81.9 77.1 86.9
Mamba

√
96.6 95.1 87.6 81.9 88.2 83.7 79.7 88.1

Mamba
√

96.9 95.1 87.2 80.7 87.8 83.2 78.6 87.6
Mamba

√ √
96.5 95.0 88.1 81.6 88.6 84.4 80.2 88.3

A similar pattern appears on MPII: DPConv boosts the base Mamba from
86.9 to 88.1 PCK, particularly improving elbow and ankle localisation. With
both modules, the model achieves 88.3 PCK—again comparable to ViTPose-B
yet at a fraction of its size and FLOPs.

These results demonstrate that the SS2D/Mamba backbone already offers
a strong efficiency–accuracy balance, and the addition of DPConv and DPU
further narrows the accuracy gap to heavier Transformer backbones while pre-
serving its lightweight nature.

4.4 Experimental analysis of module-level ablation

To further verify the effectiveness of the proposed module in feature modeling
and keypoint localization, we compare the pose heatmaps produced by the base-
line Mamba and the enhanced DTMPose across different stages. The heatmaps
visualize the model’s response to keypoints in the input image, intuitively reflect-
ing its spatial sensitivity, localization accuracy, and robustness to background
noise.

As shown in Figure 5, we present the heatmap responses of Mamba and
DTMPose across four stages (Stem, Stage 1–3): As shown in Figure 5, in the
Stem phase, Mamba exhibits weak and diffuse heatmap responses, often affected
by background noise. In contrast, DTMPose already produces more concentrated
and focused activations at this early stage. As the network deepens, DTMPose
progressively narrows the response range and sharpens the peak activations at
keypoints, maintaining localization accuracy even under motion blur or occlu-
sion (e.g., at the arms and feet). By Stage 3, DTMPose is able to highlight nearly
all keypoints with high-confidence predictions while effectively suppressing back-
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ground interference. In comparison, the baseline Mamba continues to struggle
with blurry or drifting heatmap responses in several regions.
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on the MPII dataset, evaluated by PCK of major keypoints.

To assess the stage-wise effectiveness of DTMamba, we compare it with base-
line Mamba on the MPII validation set (Figure 6, Table 5). DTMamba consis-
tently outperforms Mamba across all stages, with notable gains at peripheral
keypoints like wrists and ankles. At the Stem and Stage 1 levels, it improves
PCK by +11.52/+12.97 and PCK@0.1 by +1.19/+8.26, respectively. These im-
provements are attributed to the DPConv and DPU modules, which enhance
early-stage spatial perception and keypoint separability.

Overall, DTMamba delivers stronger multi-stage representations with higher
accuracy and efficiency, validating its suitability for lightweight pose estimation.
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Table 5. Stage-wise comparison of PCK and PCK@0.1 between DTMamba and
Mamba

Model Stem Stage 1 Stage 2 Stage 3
PCK
DTMamba(Ours) 23.20 74.51 85.18 88.26
Mamba 11.68 61.54 81.06 86.90
PCK@0.1
DTMamba(Ours) 2.00 17.41 27.20 30.14
Mamba 0.81 9.15 21.94 27.53

4.5 Pose Visualization

(a) Visualization results on the COCO
test-dev2017 dataset

(b) Visualization results on the MPII
dataset

Fig. 7. Qualitative comparison of DTMPose on two datasets. (a) COCO dataset. (b)
MPII dataset.

We present qualitative results of DTMPose on the COCO test-dev2017 and
MPII datasets (Figure 7). The model demonstrates reliable keypoint localiza-
tion under challenging conditions, including crowded scenes, occlusions, diverse
actions, and varying environments.

On COCO, DTMPose maintains accurate structural predictions despite dense
multi-person settings and background clutter. On MPII, it consistently localizes
joints across a wide range of real-world motions. These examples highlight the
model’s robustness and generalization across diverse application scenarios.
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5 Conclusions and outlook for the future

To address the challenges of high computational cost, limited local detail percep-
tion, and poor adaptability in 2D pose estimation, this paper proposed DTM-
Pose—an efficient framework that integrates Mamba-based state-space mod-
eling with sensory field-enhanced convolution. By replacing self-attention with
SS2D and incorporating local enhancement modules such as DPConv, DTMPose
achieves a strong balance between global dependency modeling and fine-grained
feature extraction. Experimental results on the COCO dataset show that DTM-
Pose achieves comparable or superior accuracy to Transformer-based baselines,
with improved robustness and generalization in complex, high-density scenarios.

In the future, we plan to extend DTMPose to multi-frame or video-based pose
estimation tasks, explore lightweight deployment on mobile devices, and further
enhance the temporal modeling capabilities by combining dynamic state-space
designs.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016)

2. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: Proc. IEEE/CVF Conf. on Computer Vision and
Pattern Recognition (CVPR), pp. 5693–5703 (2019)

3. Dosovitskiy, A., et al.: An image is worth 16×16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

4. Xu, Y., Zhang, J., Zhang, Q., Tao, D.: ViTPose: Simple vision transformer baselines
for human pose estimation. Adv. Neural Inf. Process. Syst. 35, 38571–38584 (2022)

5. Gu, A., Dao, T.: Mamba: Linear-time sequence modeling with selective state
spaces. arXiv preprint arXiv:2312.00752 (2023)

6. Xu, R., Yang, S., Wang, Y., Cai, Y., Du, B., Chen, H.: Visual Mamba: A survey
and new outlooks. arXiv preprint arXiv:2404.18861 (2024)

7. Ding, Y., et al.: I2R-Net: Intra- and inter-human relation network for multi-person
pose estimation. arXiv preprint arXiv:2206.10892 (2022)

8. Li, K., et al.: Pose recognition with cascade transformers. In: Proc. IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1944–1953 (2021)

9. Li, Y., et al.: SimCC: A simple coordinate classification perspective for human
pose estimation. In: European Conf. on Computer Vision (ECCV), pp. 89–106.
Springer, Cham (2022)

10. Li, Y., et al.: TokenPose: Learning keypoint tokens for human pose estimation. In:
Proc. IEEE/CVF Int. Conf. on Computer Vision (ICCV), pp. 11313–11322 (2021)

11. Lu, P., et al.: RTMO: Towards high-performance one-stage real-time multi-person
pose estimation. In: Proc. IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 1491–1500 (2024)

12. Maji, D., et al.: YOLO-Pose: Enhancing YOLO for multi-person pose estimation
using object keypoint similarity loss. In: Proc. IEEE/CVF Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 2637–2646 (2022)



DTMPose: Mamba Pose Estimation Framework 15

13. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking.
In: Proc. European Conf. on Computer Vision (ECCV), pp. 466–481 (2018)

14. Yang, S., Quan, Z., Nie, M., Yang, W.: TransPose: Keypoint localization via trans-
former. In: Proc. IEEE/CVF Int. Conf. on Computer Vision (ICCV), pp. 11802–
11812 (2021)

15. Dao, T., Gu, A.: Transformers are SSMs: Generalized models and efficient algo-
rithms through structured state space duality. arXiv preprint arXiv:2405.21060
(2024)

16. Zhu, L., et al.: Vision Mamba: Efficient visual representation learning with bidi-
rectional state space model. In: Proc. 41st Int. Conf. on Machine Learning (ICML)
(2024)

17. Liu, Y., et al.: VMamba: Visual state space model. Adv. Neural Inf. Process. Syst.
37, 103031–103063 (2024)

18. Yang, J., et al.: Pinwheel-shaped convolution and scale-based dynamic loss for
infrared small target detection. In: Proc. AAAI Conf. on Artificial Intelligence
39(9), 9202–9210 (2025)

19. Lin, T.Y., et al.: Microsoft COCO: Common objects in context. In: Computer
Vision – ECCV 2014, LNCS 8693, pp. 740–755. Springer, Cham (2014)

20. Andriluka, M., et al.: 2D human pose estimation: New benchmark and state of the
art analysis. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 3686–3693 (2014)

21. MMPose Contributors: OpenMMLab pose estimation toolbox and benchmark.
https://github.com/open-mmlab/mmpose (2020). Accessed 18 May 2025

22. Yang, J., et al.: Explicit box detection unifies end-to-end multi-person pose esti-
mation. arXiv preprint arXiv:2302.01593 (2023)

23. Yu, C., et al.: Lite-HRNet: A lightweight high-resolution network. In: Proc.
IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), pp.
10440–10450 (2021)

24. Xiong, Z., et al.: SwinPose: Swin transformer based human pose estimation.
In: Proc. IEEE Int. Conf. on Multimedia Information Processing and Retrieval
(MIPR), pp. 228–233 (2022)

25. Jiang, T., et al.: RTMPose: Real-time multi-person pose estimation based on MM-
Pose. arXiv preprint arXiv:2303.07399 (2023)


